Transition scattering in stochastically inhomogeneous media.
نویسندگان
چکیده
When a physical object ("a source") without its own eigenfrequency moves through an acoustically homogeneous medium, the only possible form of acoustic radiation is the emission of Mach shock waves, which appear when the source velocity surpasses sonic speed. In nonhomogeneous media, in nonstationary media, or in the neighborhood of such media, the source motion is accompanied by the so-called "transition" radiation (diffraction or scattering), which has place even when the source moves with subsonic velocity. Key features pertaining to the formation of the acoustical transition scattering in media with fluctuating acoustical parameters are established. To analytically study the effect, the Green's function method formulated in terms of functional derivatives is used. The relationship between the wave number and frequency, k=k(omega), for acoustic waves is found. The results serve to determine the phasing conditions necessary for opening the transition scattering and Cherenkov radiation channel and to establish the physical explanation for the phenomenon-scattering (transformation) on inhomogeneities of the accompanied source field; i.e., formation of radiation appears when the attached field readjusts back to the equilibrium state after being deformed while passing through the fluctuations of the medium.
منابع مشابه
A Higher Order B-Splines 1-D Finite Element Analysis of Lossy Dispersive Inhomogeneous Planar Layers
In this paper we propose an accurate and fast numerical method to obtain scattering fields from lossy dispersive inhomogeneous planar layers for both TE and TM polarizations. A new method is introduced to analyze lossy Inhomogeneous Planar Layers. In this method by applying spline based Galerkin’s method of moment to scalar wave equation and imposing boundary conditions we obtain reflection and...
متن کاملGeneral Formulation to Investigate Scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structures
This paper presents a general formulation to investigate the scattering from Multilayer Lossy Inhomogeneous Metamaterial Planar Structure (MLIMPS) with arbitrary number of layers and polarization. First, the dominating differential equation of transverse components of electromagnetic fields in each layers derived. Considering the general form of solution of the differential equations and the bo...
متن کاملEquiphase-sphere approximation for light scattering by stochastically inhomogeneous microparticles.
We report the development and validation of the equiphase-sphere (EPS) approximation for calculating the total-scattering cross-section (TSCS) spectra of inhomogeneous microparticles having complex interior structures. We show that this closed-form, analytical approximation can accurately model the TSCS of randomly inhomogeneous spherical particles having internal refractive index variations wi...
متن کاملElectromagnetic Wave Scattering from Rough Boundaries Interfacing Inhomogeneous Media and Application to Snow-Covered Sea Ice
In this study a new analytical formulation for electromagnetic wave scattering from rough boundaries interfacing inhomogeneous media is presented based on the first-order approximation of the small perturbation method. First, we considered a scattering problem for a single rough boundary embedded in a piecewise continuously layered medium. As a key step, we introduced auxiliary wave propagation...
متن کاملBranching Random Walks in Time Inhomogeneous Environments
We study the maximal displacement of branching random walks in a class of time inhomogeneous environments. Specifically, binary branching random walks with Gaussian increments will be considered, where the variances of the increments change over time macroscopically. We find the asymptotics of the maximum up to an OP (1) (stochastically bounded) error, and focus on the following phenomena: the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of the Acoustical Society of America
دوره 125 2 شماره
صفحات -
تاریخ انتشار 2009